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a b s t r a c t

Differences in electrochemical characteristics among Li-ion batteries and factors such as temperature and
ageing result in erroneous state-of-charge (SoC) estimation when using the existing extended Kalman
filter (EKF) algorithm. This study presents an application of the Hamming neural network to the iden-
tification of suitable battery model parameters for improved SoC estimation. The discharging–charging
voltage (DCV) patterns of ten fresh Li-ion batteries are measured, together with the battery parameters,
eywords:
amming network
attern recognition
tate-of-charge (SoC)
umped parameter battery model

as representative patterns. Through statistical analysis, the Hamming network is applied for identifica-
tion of the representative DCV pattern that matches most closely of the pattern of the arbitrary battery to
be measured. Model parameters of the representative battery are then applied to estimate the SoC of the
arbitrary battery using the EKF. This avoids the need for repeated parameter measurement. Using model
parameters selected by the proposed method, all SoC estimates (off-line and on-line) based on the EKF

ues e
i-ion battery are within ±5% of the val

. Introduction

The Li-ion battery is widely used in many fields because of its
dvantages of high voltage, low mass, low self-discharge, and long
ycle-life. High specific energy, in particular, makes it a promising
andidate for electric vehicles (EVs) and hybrid electric vehicles
HEVs) [1–3]. In such applications, a battery management system
BMS) is critical for maintaining optimum battery performance,
nd the most important parameter controlled by such a system
s the state-of-charge (SoC) [4,5]. Precise SoC information is critical
n practical applications where it is necessary to determine how
ong the battery will last and, importantly, when to stop charging
nd discharging, as over-charging and over-discharging may cause
ermanent internal damage.

In recent years, much research has been devoted to develop-
ng improved methods for SoC estimation [6–10]. Ampere-hour
ounting, the most common method, is easy and reliable, but can
uffer from initial value errors and accumulated errors from incor-

ect measurements, in addition to inherent inaccuracy stemming
rom unaccounted current losses. The open-circuit voltage (OCV)

ethod is very accurate, but cannot be used in real time as the
attery must first be disconnected. These drawbacks with con-
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ventional methods are addressed by new adaptive methods that
rely on computational techniques such as neural networks, fuzzy
logic, adaptive observers, and the extended Kalman filter (EKF). The
EKF method, in particular, has seen substantial progress in recent
years [11–13]. This method is known to be an optimum adaptive
algorithm based on recursive estimation. The accuracy of the EKF
depends largely on predetermined parameter values used in the
lumped parameter model of the battery system. As shown in Fig. 1,
it is very important to measure correctly model parameters that
include the OCV, series resistance (Ri), diffusion resistance (RDiff),
and diffusion capacitance (CDiff) [14–18]. Since, however, these
parameters vary with electrochemical characteristics [19–21], tem-
perature [22–31] and age [32–41], the accuracy of this estimation
method will also vary. The error can be reduced by repeated mea-
surement of parameter values, but such an exercise would be very
time-consuming and inefficient. Thus, existing EKF algorithms can
only be applied to a single battery under controlled experimental
conditions [15–18].

In general, battery voltage changes with the discharg-
ing/charging pulse current. In addition, the magnitude of the
increase or decrease in this voltage, called the voltage variance, is
associated with changes in battery parameters. That is, the voltage

variance can be used to determine the magnitude of the parame-
ters for the battery model (Fig. 1). For reference, two resistances,
namely, the series resistance (Ri) and the diffusion resistance
(RDiff), are considered critical factors. When a constant discharg-

dx.doi.org/10.1016/j.jpowsour.2010.08.119
http://www.sciencedirect.com/science/journal/03787753
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Nomenclature

SoC state-of-charge
EKF extended Kalman filter
OCV open circuit voltage
Ri series resistance
RDiff diffusion resistance
CDiff diffusion capacitance
DCV discharging/charging voltage
DV discharging voltage
CV charging voltage
DCIR direct current internal resistance
Kk Kalman gain
xk state
wk process noise
Qk process noise covariance
vk measurement noise
Rk measurement noise covariance
Pk covariance matrix of state estimation uncertainty
Hk measurement sensitivity matrix
HD Hamming distance
W weight matrix
b bias vector
p input vector
a output vector
R number of elements in each input vector
S number of neurons
ε lateral interaction coefficient
ISVP initial starting voltages points
m average of each characteristic parameter
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std standard deviation of each characteristic parameter
˛ tuning value

ng/charging current is commonly applied to the batteries, the
agnitudes of the respective voltage variances are different. In

ddition, the discharging/charging voltage (DCV) pattern of each
attery is almost constant under identical conditions such as
oltage magnitude, current type (discharging/charging), and time
nterval. Therefore, the DCV pattern can be used to discriminate
mong Li-ion batteries with different characteristics for improved
oC estimation. This investigation proposes the use of a Hamming
eural network for such DCV pattern recognition. The Hamming
etwork is generally used and designed explicitly for binary pattern
ecognition. In this study, the Hamming network is used to evaluate
everal predetermined representative DCV patterns and determine

he one that is closest to the input DCV pattern by comparing the
nner products. Through statistical analysis, the proposed method
an perform recognition of an arbitrary DCV pattern. Represen-
ative DCV patterns are collected from ten fresh Li-ion batteries,

ig. 1. Lumped parameter battery model: open-circuit voltage (OCV), series resis-
ance (Ri), diffusion resistance (RDiff), and diffusion capacitance (CDiff).
Fig. 2. Experimental setup.

together with seven characteristic model parameters for each bat-
tery. In addition, to simplify the statistical analysis, all the DCV
patterns are separated into two groups: discharging voltage (DV)
patterns and charging voltage (CV) patterns. Finally, the model
parameters of the identified representative battery are used for SoC
estimation of an arbitrary battery. This avoids the need for repeated
measurement of model parameters. The SoC estimates based on off-
line and on-line methods are compared with those of ampere-hour
counting. Then, two SoC estimation results of the EKF satisfy the
specification within ±5%.

2. Experimental

Experimental studies were conducted on Samsung 18650 Li-ion
batteries that had a rated capacity of 1.3 Ah. As shown in Fig. 2, the
experimental set-up comprised a power supply for battery charging
(Agilent E3633A), an electric load for discharging (Hewlett Packard
6050A), a humidifier chamber for temperature control (Hitachi U-
6652P-CH3), and an electrochemical impedance spectroscope (EIS)
for obtaining impedance plots (Zahner IM6ex). The experimental
results were collected with a data-acquisition board, stored on a PC,
and used as inputs for MATLAB/Simulink S-function simulations. All
experiments were performed at 25 ◦C.

For reference, the rated capacity was measured by fully
charging–discharging scheme. For fully charging Li-ion batteries,
the constant current–constant-voltage (CC–CV) protocol was used.
A direct current of 0.65 A(C/2) was used to charge the battery dur-
ing the constant current part and the cut-off voltage was set at
4.2 V. Subsequently, the voltage was held constant at 4.2 V till the
current fell to 100 mA. After fully charging, the constant-current
(CC) protocol was used for fully discharging. A direct current of
4 A(3C) was used to discharge the battery and the cut-off voltage
was set at 2.8 V. Using this protocol, the battery could be completely
discharged to obtain the capacity. So, the batteries were operated
within the voltage range from 2.8 V to 4.2 V.

In the entire SoC range at each 10% SoC interval (except at SoC
0% and 100%), the OCV, the direct current internal resistance (DCIR)
[42] and the impedance were measured by a 10% SoC CC discharging
segment. During a period of 1 h, the interval between the previ-
ous discharging and the following discharging, a rest period was
applied to return to the electrochemical and thermal equilibrium
conditions. The battery voltage was stable during the experiments
and changed by <1 mV. The impedance data generally covered a
frequency range of 1 mHz to 100 kHz in the potentiostatic mode. A
sinusoidal a.c. voltage signal of ±5 mV was applied.
3. Battery parameters and a.c. impedance measurements

The model parameters and a.c. impedance were measured to
determine their variance with electrochemical characteristics and



J. Kim et al. / Journal of Power Sources 196 (2011) 2227–2240 2229

Table 1
Rated capacities (Ah) of ten fresh Li-ion batteries at 25 ◦C.

Battery No. 1 No. 2 No. 3 No. 4 No. 5

Capacity [Ah] 1.2748 1.2844 1.2826 1.2841 1.2865
Battery No. 6 No. 7 No. 8 No. 9 No. 10
Capacity [Ah] 1.2761 1.2925 1.2753 1.2704 1.2796
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Fig. 4. DCIR and RDiff results for ten fresh batteries at various temperatures
(10–50 ◦C; interval, 10 ◦C).
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Fig. 3. DCIR (Ri + RDiff) results for ten fresh batteries at 25 ◦C.

emperature/ageing effects. Note that in exploring the question of
arameter variation, this paper is limited to two resistances—series
esistance (Ri) and diffusion resistance (RDiff).

.1. Electrochemical characteristics

Model parameters are not always consistent across batteries
ith similar rated capacities. Table 1 shows the rated capacities

f ten fresh Li-ion batteries. As shown in Fig. 3, in the entire SoC
ange except at SoC 0% and 100%, the sum of two resistances
Ri + RDiff), called DCIR, is not consistent. In addition, the inconsis-
ent DCIR values are shown at SoC 60% for the ten experimental
atteries.

.2. Temperature and ageing effects

Model parameters generally vary with temperature. The DCIR
nd RDiff of ten fresh batteries at various temperatures (10–50 ◦C)
t SoC 60% are compared with those at 25 ◦C in Fig. 4. Due to the
ifferent electrochemical characteristics, large differences are seen

n the DCIR and RDiff results among the batteries. Fig. 5 shows a.c.
mpedance measurements made using Nyquist plots in the fre-
uency domain at SoC 30, 60, and 90%. It is seen that temperature
as a significant effect on the a.c. impedance. With increased tem-
erature, the diameter of the two overlapping arcs, which reflects
he RDiff becomes smaller. Consequently, it can be concluded that
Diff is the primary factor affected by temperature.

Ageing is another important effect that influences battery
arameters. Calendar-life tests [43] were used to degrade perfor-
ance over periods of 50–150 days at 60 ◦C. The a.c. impedance
easurements of aged batteries using Nyquist plots in the fre-

uency domain at SoC 30 and 60% at 25 ◦C are presented in Fig. 6.

he diameters of the two overlapping arcs are clearly related to
geing time. Thus, RDiff as a primary factor is influenced by age-
ng. Due to the different electrochemical characteristics, there is
ome difference between the diameters of the overlapping arcs
n the impedance spectra at SoC 30 and 60%. Combined tempera-
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
Re[Z]

Fig. 6. a.c. impedance spectra of aged batteries at 25 ◦C (SoC 30 and 60%).
ture/ageing effects can cause large differences, as shown in Table 2,
Figs. 7 and 8. The ageing effect led to the most marked differences
in the diameters of the two overlapping arcs from that of a fresh
battery.
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Table 2
Rated capacities (Ah) of fresh battery and five batteries aged at 10, 25 and 50 ◦C.

Calendar-life test days Capacity
[Ah] 10◦C

Capacity
[Ah] 25◦C

Capacity
[Ah] 50◦C

No of days (Fresh) 1.1113 1.2901 1.3192
50 days 0.9890 1.1482 1.2352
75 days 0.9622 1.1170 1.1834
100 days 0.9057 1.0515 1.1332
125 days 0.8649 1.0041 1.1039
150 days 0.8577 0.9957 1.0649
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Fig. 7. DCIR (Ri + RDiff) results for a fresh battery and aged batteries at 25 and 50 ◦C.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-Im
[Z

]

SOC90%(25T)
SOC60%(25T)
SOC30%(25T)
SOC90%(50T)
SOC60%(50T)
SOC30%(50T)
SOC90%(10T)
SOC60%(10T)
SOC30%(10T)

F
9

a
B

4

a
m

D

M

d

)

Re[Z]

ig. 8. a.c. impedance spectra of aged batteries at 10, 25 and 50 ◦C (SoC 30, 60, and
0%).

Consequently, it should be mentioned that model parameters
re greatly varied by the three factors. These factors lead to low
MS performance but, to date, no definitive solution exists.

. Extended Kalman filter (EKF)

The EKF is the optimum state estimator for a non-linear system
nd is widely used for SoC estimation. In general, the dynamic and
easurement models used in the EKF are as follows.

ynamic model : xk = fk−1(xk−1) + g(uk−1) + wk−1 wk∼N(0, Qk)
(1)

easurement model : zk = hk(xk) + i(uk) + vk vk∼N(0, Rk) (2)

Here wk represents process noise and is assumed to be indepen-
ent, zero-mean, Gaussian noise with a covariance matrix Qk. The
rces 196 (2011) 2227–2240

measurement noise vk is assumed to be independent, zero-mean,
Gaussian noise with a covariance matrix Rk. Then, the equations
that decide the Kalman gain Kk are as follows:

Kk = PkHT
k [HkPkHT

k + Rk]
−1

(3)

x̂k(+) = x̂k(−) + Kk[Zk − Hkx̂k(−)] (4)

where the error covariance matrix is Pk and the measurement sen-
sitivity matrix is Hk.

Estimation of the SoC requires a lumped parameter model
(Fig. 1) that represents the static and dynamic behaviour of the bat-
tery. This can serve to construct the simplified model and prevent
the EKF algorithm from measurement errors caused by inaccu-
rate modelling. The simplified model has only two states. With the
states incorporated, the dynamic model for the EKF is expressed as:

xk =
[

SoC
VDiff k

]
=

[
1 0

0 1 − �t

CDiffRDiff

][
SoCk−1
VDiff k−1

]
+

⎡
⎣ �t

Cn
�t

CDiff

⎤
⎦ ik−1(5

The measurement model and the terminal voltage of the battery
are expressed by the following non-linear function.

Vk = hk(OCV, VDiff) − Riik = OCV − VDiff − Riik (6)

The OCV in the measurement equation is implemented by the
OCV–SoC relationship:

∂hk

∂xk
=

[
∂hSoC(SoC)

∂SoC
0

0 −1

]
OCV = hSoC(SoC), hSoC = f −1

ocv (7)

5. Hamming network

The Hamming neural network [44–50] is used for pattern
recognition, as shown in Fig. 9. It is one of the simplest exam-
ples of a competitive network and is designed explicitly to solve
binary pattern recognition issues. The Hamming network decides
which representative pattern is closest to the current pattern by
comparing the inner products. Its objective is to decide which pro-
totype vector is closest to the input vector. The Hamming network
consists of two layers: the feedforward layer and the recurrent
layer.

5.1. Feedforward layer

The feedforward layer calculates a correlation or inner prod-
uct between each representative pattern and the current pattern
in order to find the minimum Hamming distance (HD) from cal-
culation the difference between dimension m and HD. In order to
calculate the inner product, a weight matrix W1 is a set of proto-
type vectors and is transformed into a binary form, in addition to
the bias vector, b1:

W1 =

⎡
⎢⎢⎣

1wiT

2wiT

...

SwiT

⎤
⎥⎥⎦ = 1

2

⎡
⎢⎢⎣

1w1
2w1 · · · Sw1

1w2
2w2 · · · Sw2

...
...

. . .
...

1wR
2wR · · · SwR

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

pT
1

pT
2
...

pT
S

⎤
⎥⎥⎦ (8)

b1 = [R, R, . . . , R] =
[

m

2
,

m

2
, . . . ,

m

2

]
(9)

where each row of W1 represents a prototype vector which it is
required to be recognize; each element of b1, m/2, is the threshold
value and is set equal to the number of elements in each input vector
R; and S is the number of neurons. As expressed in Eq. (10), it is

high desirable to have the ith (1 ≤ i ≤ R) node in this layer compute
m − HD(iw, p) for a given input vector p, where HD(iw, p) is the
Hamming distance between vectors iw and p. Then, the net input of
node is as in Eq. (11), namely, the feedforward layer output. Finally,
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(DV; i ≥ 0) and charging voltage patterns (CV; i < 0), as shown in
Fig. 12(a) and (b). Second, the initial starting points of each DV and
CV pattern should be fixed. As shown in Figs. 13 and 14, the initial
starting voltage points (ISVP) of the ten representative batteries
are not fixed due to their different electrochemical characteris-
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Fig. 9. Ham

hese outputs are equal to the inner (Eq. (12)). The neuron in this
ayer with the largest output corresponds to the prototype pattern
hat is closest in Hamming distance to the input pattern.

1p = [m − HD(iw, p)] − HD(iw, p) (10)

eti = n1 = W1p + m

2
= m − HD(iw, p) i = 1, 2, . . . , S (11)

1 = W1p+b1 =

⎡
⎢⎢⎣

pT
1p + R

pT
2p + R

...
pT

S p + R

⎤
⎥⎥⎦ = purelin(W1p + b1) (12)

.2. Recurrent layer

The recurrent layer is known as the MAXNET. It is a competition
ayer that performs the winner-take-all (WTA) operation, whose
urpose is to enhance the initial dominant response of the ith node
nd suppress the others [50]. The neurons are initialized with the
utputs of the feedforward layer, which indicate the correlation
etween the prototype vectors and the input vector:

2(0) = a1 (13)

s a result of recurrent processing, the ith node responds positively,
hereas the responses of all remaining nodes decay to zero. Thus,

n order to determine a winner (which only has a positive output),
he neurons compete with each other. Then, the recurrent layer
utput is updated according to the following recurrence relation
sing a positive transfer function (poslin):

2(t + 1) = poslin(W2a2(t)) (14)

his processing requires self-feedback connections and negative
ateral inhibition connections in which the output of each neu-
on has an inhibitory effect on all of the other neurons. The n × n
eight matrix of the recurrent layer W2 is taken in Eq. (15). The
eights in this layer are set so that the diagonal elements are 1,

nd the off-diagonal elements have a small negative value, where
< ε < 1/(S − 1) is called the lateral interaction coefficient. Thus,
eight values of 1 and −ε can be set for the appropriate elements

f W2 in Eq. (16), where 1 ≤ i ≤ S and 1 ≤ j ≤ S.

2 =

⎡
⎢⎢⎣

w1 w2 · · · wS

w1 w2 · · · wS

...
...

. . .
...

1 2 S

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 −ε · · · −ε
−ε 1 · · · −ε
...

...
. . .

...
−ε −ε · · · 1

⎤
⎥⎥⎦ (15)
w w · · · w

2
i (t + 1) = poslin

⎛
⎝a2

i (t) − ε
∑
j /= i

a2
j (t)

⎞
⎠ (16)
network.

The output of each neuron decreases in proportion to the sum
of the outputs of the other neutrons. The output of the neuron with
the largest initial output decreases more slowly than the outputs
of the other neurons. But eventually, only one neuron will have
a positive output. The index of the recurrent layer neuron with a
stable positive output is the index of the prototype vector that is
the best match with the input.

6. Proposed approach

6.1. Discharging/charging voltage (DCV) measurement

After fully charging (SoC 100%) at a constant current of 4 A,
followed by a rest period, each battery was discharged to SoC
80%. Then, for a scaled-down discharging/charging current profile
(Fig. 10(a)) of a HEV (time interval, 100 ms), the DCV data col-
lected is shown in Fig. 10(b). The DCV pattern is recognized through
experiments for 20 fresh 1.3-Ah Li-ion batteries at 25 ◦C (Fig. 11).

6.2. Initial starting voltage points (ISVP)

For recognition of the DCV pattern with the Hamming network,
statistical analysis is absolutely necessary. First, given current i, all
DCVs are separated into two patterns: discharging voltage patterns
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
3.2

Time[100ms]

Fig. 10. Two plots for discharging/charging voltage pattern (DCV): (a) current pro-
file; (b) voltage data.
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Table 3
Characteristics of AVE and STD in relation to voltage variance.

Voltage variance (initial voltage − final voltage) Discharging Charging

AVE STD AVE STD

Large voltage variance Small Large Large Large
Small voltage variance Large Small Small Small

Table 4
Seven characteristic parameters.

DCV pattern C1 Standard deviation DCV
DV pattern C2 Standard deviation DV
CV pattern C3 Standard deviation CV
DV pattern C4 Average DV

C5 Standard deviation DV
Time[100ms]

ig. 12. Two patterns separated from DCV pattern: (a) discharging voltage pattern

DV), (b) charging voltage pattern (CV).

ics. Hence, the average and standard deviations of the collected
ischarging/charging voltages cannot be compared. Therefore, it is
equired to set a standard ISVP, as shown in Fig. 15.

Fig. 13. Unfixed discharging volta
CV pattern C6 Average CV
C7 Standard deviation CV

Standard: No. 6 (discharging), No. 1 (charging) : fixation

For example, consider three batteries (A–C) with different ISVPs
(VA11–VC11). If the standard battery is set as B (VB1I = VB2I), then the
voltages of A and C are higher and lower, respectively (VA1I → VA2I;
VC1I → VC2I). Therefore, the three ISVPs are fixed at one point. The
fixed discharging/charging voltages are given in Fig. 16(a) and (b),
respectively. All average and standard deviations for the collected
discharging/charging voltages can be compared by statistical anal-
ysis. For given the discharging/charging conditions, the average
(AVE) and standard deviation (STD) in relation to voltage variance
are presented in Table 3. Regardless of the discharging/charging
conditions, the STD values increased at large voltage variance.
These features of AVE and STD are used to implement some charac-
teristic parameters of the Hamming network, as shown in Table 4.

6.3. Characteristic parameters of DCV pattern

Here, as indicated in Table 4, seven characteristic parameters
(C1–C7) are learned by the Hamming network using the aver-
ages and standard deviations based on DCV, DV and CV patterns.
Each value of the seven characteristic parameters corresponding
to the ten representative DCV patterns is transformed into 1 and
−1 array as the four levels of Fig. 17. If these patterns are not

transformed into this binary form, then the pattern recognition
performance can be distorted by the one parameter that has a
large real value. In Fig. 17, m is the average and std is the stan-
dard deviation of each characteristic parameter, and these values
are given in Table 5. The levels of each parameter are decided by

ges for ten Li-ion batteries.
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Fig. 14. Unfixed charging voltages for ten Li-ion batteries.

Fig. 15. Initial starting voltage points (ISVP) fixation.
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Fig. 17. Four levels and three standards.
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Time[100ms]

Li-ion batteries: (a) discharging; (b) charging.

three standards, viz., m − (˛ × std), m, and m + (˛ × std). The levels
are decided according to the values of the parameters, as shown
in Fig. 18. For example, if the value is larger than m − (˛ × std) and
smaller than m, the level is L2; ˛ is a tuning value and is chosen
as 0.5 to make the characteristic differences of ten representative

patterns.
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Fig. 18. Characteristics of ten representative patterns.

Table 5
Average (m) and standard deviation (std) of each characteristic parameter.

Battery C1–C7

DCV DV CV DV CV

Standard Standard Standard Average Standard Average Standard

No. 1 0.1673 0.1199 0.1170 3.6456 0.1201 3.9299 0.1168
No. 2 0.1699 0.1244 0.1212 3.6317 0.1244 3.9345 0.1212
No. 3 0.1710 0.1261 0.1222 3.6289 0.1261 3.9355 0.1222
No. 4 0.1727 0.1263 0.1227 3.6280 0.1263 3.9368 0.1227
No. 5 0.1683 0.1210 0.1179 3.6431 0.1215 3.9321 0.1180
No. 6 0.1693 0.1235 0.1199 3.6332 0.1230 3.9340 0.1192
No. 7 0.1739 0.1276 0.1240 3.6255 0.1276 3.9379 0.1240
No. 8 0.1657 0.1167 0.1135 3.6478 0.1180 3.9242 0.1134

6

p
t
c
t
r
l

No. 9 0.1637 0.1145 0.1121
No. 10 0.1669 0.1193 0.1165
Average (m) 0.1689 0.1219 0.1187
Stanard (std) 0.003148 0.004367 0.003986

.4. Pattern recognition with Hamming network

As shown in Fig. 19, the feedforward layer calculates the inner
roduct between each representative pattern and the current pat-

ern. The value of each of the seven characteristic parameters
orresponding to ten representative patterns is transformed into
he binary form and stored in the weight matrix W1. The ten neu-
ons storing the results of the inner product in the feedforward
ayer compete with each other to determine a winner. After the

21X1

R=21

21

10X21 10X1
+

10X1

W1

b1

Fig. 19. Hamming networ
3.6503 0.1123 3.9217 0.1112
3.6465 0.1197 3.9286 0.1165
3.6378 0.1219 3.9315 0.1185
0.009936 0.004626 0.005385 0.004161

competition, only one neuron will have a non-zero output, and
this neuron indicates the representative pattern that is closest to a
current pattern.
6.5. Verification

The DCIR results for the ten representative batteries were com-
pared with an unknown pattern, as shown in Table 6, and the
outputs of the two layers of the Hamming network for three

10X10
10X1 10X1

W2 D

k used in the study.
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Table 6
DCIR results of ten Li-ion batteries used as representatives [�].

Battery SoC

10% 20% 30% 40% 50% 60% 70% 80% 90%

No. 1 0.07431 0.07424 0.07248 0.07137 0.07018 0.07270 0.07397 0.07259 0.07138
No. 2 0.07999 0.07719 0.07628 0.07375 0.07239 0.07486 0.07688 0.07571 0.07576
No. 3 0.08077 0.07787 0.07656 0.07450 0.07278 0.07550 0.07762 0.07656 0.07645
No. 4 0.08183 0.07922 0.07796 0.07709 0.07607 0.07883 0.07916 0.07800 0.07717
No. 5 0.07449 0.07329 0.07240 0.07125 0.07029 0.07303 0.07361 0.07333 0.07200
No. 6 0.07832 0.07609 0.07494 0.07264 0.07164 0.07353 0.07508 0.07425 0.07423

0.07844 0.08108 0.08153 0.08035 0.07889
0.06769 0.07018 0.07076 0.07036 0.07012
0.06569 0.06876 0.06948 0.06921 0.06926
0.06963 0.07328 0.07404 0.07308 0.07270

u
t
h
D
t

F
N

50a

T
D

T
M

No. 7 0.08503 0.08146 0.08059 0.07962
No. 8 0.07257 0.07140 0.07005 0.06879
No. 9 0.07179 0.06969 0.06878 0.06725
No. 10 0.07519 0.07369 0.07302 0.07151

nknown patterns are shown in Figs. 20–22. In each case, it seen

hat, in the recurrent layer only the selected representative pattern
as a non-zero output. In addition, as demonstrated in Table 7, the
CIR results of the three unknown batteries are similar to those of

he representative pattern selected.
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ig. 20. Outputs of two neural network layers (arbitrary battery 1, selected pattern
o. 10): (a) feedforward layer; (b) recurrent layer.
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able 7
CIR results of three unknown Li-ion batteries [�].

Battery SoC

10% 20% 30% 40%

Test 1 0.07552 0.07381 0.07330 0.07173
Test 2 0.08068 0.07775 0.07642 0.07431
Test 3 0.07453 0.07412 0.07235 0.07123

able 8
odel parameters of ten Li-ion batteries used as representatives.

Battery SoC

Diffusion resistance RDiff [�]

No. 1 0.02918
No. 2 0.03139
No. 3 0.03178
No. 4 0.03507
No. 5 0.02929
No. 6 0.03064
No. 7 0.03764
No. 8 0.02669
No. 9 0.02469
No. 10 0.02863
Ri = 0.04110 �, � = 46.37 s
0 20 40 60 80 100 120 140 160 180 200
0

Fig. 21. Outputs of two neural network layers (arbitrary battery 2, selected pattern
No. 3): (a) feedforward layer; (b) recurrent layer.

6.6. SoC estimation
In the proposed method, as shown in Fig. 1, the OCV, Ri, RDiff, CDiff,
and capacity are measured in advance. For reference, it is assumed
that Ri is constant, RDiff/CDiff is the time constant � (= 46.37 s), and
SoC is 50%. The OCVs and other model parameters are listed in
Fig. 23 and Table 8, respectively.

50% 60% 70% 80% 90%

0.06978 0.07341 0.07411 0.07316 0.07283
0.07256 0.07533 0.07787 0.07665 0.07654
0.07032 0.07252 0.07387 0.07243 0.07131

Diffusion capacitance CDiff [F] Capacity [Ah]

1589.19 1.2748
1477.30 1.2844
1459.17 1.2826
1322.28 1.2841
1583.22 1.2865
1513.46 1.2761
1238.58 1.2925
1737.45 1.2753
1878.19 1.2704
1619.72 1.2796
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Fig. 22. Outputs of two neural network layers (arbitrary battery 3, selected pattern
No. 1): (a) feedforward layer; (b) recurrent layer.
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Fig. 23. Open circuit voltages (OCV) of ten Li-ion batteries.
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Fig. 24. Two plots for discharging/charging of unknown battery: (a) current profile;
(b) voltage data.
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Fig. 25. Two separated voltages from discharging/charging voltage of arbitrary bat-
tery: (a) discharging voltage; (b) charging voltage.

Fig. 26. SoC estimation based on EKF in comparison with ampere-hour counting (arbitrary battery 1, selected pattern No. 10): (a) SoC estimation (initial SoC 79.85%); (b)
estimation error.
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Fig. 27. SoC estimation based on EKF in comparison with ampere-hour counting (arbitrar
estimation error.

Fig. 28. SoC estimation based on EKF in comparison with ampere-hour counting (arbitrar
error.
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Fig. 29. Outputs of two layers (arbitrary battery, selected pattern No. 4): (a) feed-
forward layer; (b) recurrent layer.
rces 196 (2011) 2227–2240 2237

y battery 2, selected pattern No. 3): (a) SoC estimation (initial SoC 0.5); (b)
y battery 3, selected pattern No. 1): (a) SoC estimation (initial SoC 0); (b) estimation

Fig. 30. Online SoC estimation based on EKF in comparison with ampere-hour
counting (arbitrary battery, selected pattern No. 4).
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Table 9
DCIR results for unknown Li-ion battery used for online SoC estimation [�].

Battery SoC
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10% 20% 30% 40%

Test 1 0.08212 0.07981 0.07852 0.07773

.6.1. Off-line SoC estimation
As shown in Fig. 24(a), another scaled-down HEV automotive

urrent profile (time interval, 1 s) was applied to the battery to
e measured. Then, as seen in Fig. 24(b), the discharging/charging
oltage data were collected. Then the discharging/charging volt-
ge was separated into the discharging and charging voltage,
s presented in Fig. 25. Next, for the three unknown batteries
n Section 6.5, the model parameters of selected representa-
ive patterns were used to estimate the SoC. Thus, it is possible
o estimate the SoC for an arbitrary battery, without the need
or repeated measurement of model parameters. As indicated in
igs. 26–28, all SoC estimates were within ±5% of the ampere-
ounting results.

.6.2. On-line SoC estimation
Offline SoC estimation involves sequential processing. After

ischarging–charging a battery using a scaled HEV driving current
rofile, pattern recognition and SoC estimation were performed
equentially. This off-line processing is very useful to screen the
atteries that have similar electrochemical characteristics under
ischarging/charging during a long period time over a fully SoC
ange, because it cannot be assured that discharging/charging
uring a short period time can determine the electrochemical char-
cteristic of a battery [51]. For SoC estimation, however, it may be
ime-consuming. The proposed method relies on constant model
arameters for a set of selected representative patterns for SoC
stimation. Therefore, in order to reduce the SoC estimation error
n comparison with off-line processing, online SoC estimation can
e performed. The same discharging/charging current profile as
hat used for off-line SoC estimation is adopted. During discharg-
ng/charging, only voltage data for the last 6000 s are necessary
or pattern recognition. Every 300 s, the stored signals are ana-
yzed statistically. The storing period of signals, i.e., 1 s, and the
pdating period of the control algorithm, 300 s, were selected so
s not overload the control unit. Then, the SoC estimation is not
bsolutely performed during this period. After pattern recognition,
he model parameters of the selected battery are used to estimate
he SoC. As shown in Fig. 29, the selected representative pattern
s No. 4. The DCIR for the unknown battery is compared with that
f representative pattern of No. 4 in Table 9. As shown in Fig. 30,
he estimated SoC using the parameters of representative battery
o. 4 are within ±5% of the estimated obtained by ampere-hour
ounting. A schematic diagram of the proposed method is given in
ig. 31.

. Conclusion

Precise SoC estimation is critical for practical applications and
o prevent over-charging and over-discharging of Li-ion batteries
hat may cause permanent internal damage. Unfortunately, how-
ver, the existing EKF algorithm does not account for variations
n battery parameters due to differences in electrochemical char-
cteristics and the effects of temperature and ageing. This study

roposes a method to identify the characteristics of Li-ion batter-

es using the Hamming network for improved SoC estimation. The
ischarging/charging voltage patterns of ten fresh representative
i-ion batteries are used. The model parameters of a representative
attery that most closely matches the discharging/charging volt-

[

[

50% 60% 70% 80% 90%

0.07645 0.07921 0.07974 0.07789 0.07701

age pattern of the unknown battery to be measured are used for
SoC estimation by the conventional EKF. This avoids the need for
measurement of battery parameters before every SoC estimation
process. It can be concluded that SoC estimation can be selec-
tively and quickly implemented off-line or on-line by the proposed
methods for discharging/charging a battery in, for example, screen-
ing processes. The proposed method produces estimates that are
within ±5% of those obtained by ampere-hour counting.
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