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Differences in electrochemical characteristics among Li-ion batteries and factors such as temperature and
ageing result in erroneous state-of-charge (SoC) estimation when using the existing extended Kalman
filter (EKF) algorithm. This study presents an application of the Hamming neural network to the iden-
tification of suitable battery model parameters for improved SoC estimation. The discharging-charging
voltage (DCV) patterns of ten fresh Li-ion batteries are measured, together with the battery parameters,
as representative patterns. Through statistical analysis, the Hamming network is applied for identifica-
tion of the representative DCV pattern that matches most closely of the pattern of the arbitrary battery to
be measured. Model parameters of the representative battery are then applied to estimate the SoC of the
arbitrary battery using the EKF. This avoids the need for repeated parameter measurement. Using model
parameters selected by the proposed method, all SoC estimates (off-line and on-line) based on the EKF
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are within +5% of the values estimated by ampere-hour counting.
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1. Introduction

The Li-ion battery is widely used in many fields because of its
advantages of high voltage, low mass, low self-discharge, and long
cycle-life. High specific energy, in particular, makes it a promising
candidate for electric vehicles (EVs) and hybrid electric vehicles
(HEVs) [1-3]. In such applications, a battery management system
(BMS) is critical for maintaining optimum battery performance,
and the most important parameter controlled by such a system
is the state-of-charge (SoC) [4,5]. Precise SoC information is critical
in practical applications where it is necessary to determine how
long the battery will last and, importantly, when to stop charging
and discharging, as over-charging and over-discharging may cause
permanent internal damage.

In recent years, much research has been devoted to develop-
ing improved methods for SoC estimation [6-10]. Ampere-hour
counting, the most common method, is easy and reliable, but can
suffer from initial value errors and accumulated errors from incor-
rect measurements, in addition to inherent inaccuracy stemming
from unaccounted current losses. The open-circuit voltage (OCV)
method is very accurate, but cannot be used in real time as the
battery must first be disconnected. These drawbacks with con-
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ventional methods are addressed by new adaptive methods that
rely on computational techniques such as neural networks, fuzzy
logic, adaptive observers, and the extended Kalman filter (EKF). The
EKF method, in particular, has seen substantial progress in recent
years [11-13]. This method is known to be an optimum adaptive
algorithm based on recursive estimation. The accuracy of the EKF
depends largely on predetermined parameter values used in the
lumped parameter model of the battery system. As shown in Fig. 1,
it is very important to measure correctly model parameters that
include the OCV, series resistance (R;), diffusion resistance (Rpjs),
and diffusion capacitance (Cpi) [14-18]. Since, however, these
parameters vary with electrochemical characteristics[19-21], tem-
perature [22-31] and age [32-41], the accuracy of this estimation
method will also vary. The error can be reduced by repeated mea-
surement of parameter values, but such an exercise would be very
time-consuming and inefficient. Thus, existing EKF algorithms can
only be applied to a single battery under controlled experimental
conditions [15-18].

In general, battery voltage changes with the discharg-
ing/charging pulse current. In addition, the magnitude of the
increase or decrease in this voltage, called the voltage variance, is
associated with changes in battery parameters. That is, the voltage
variance can be used to determine the magnitude of the parame-
ters for the battery model (Fig. 1). For reference, two resistances,
namely, the series resistance (R;) and the diffusion resistance
(Rpjfr), are considered critical factors. When a constant discharg-
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Nomenclature

SoC state-of-charge

EKF extended Kalman filter

ocv open circuit voltage

Ri series resistance

Rpifr diffusion resistance

Chitr diffusion capacitance

DCV discharging/charging voltage

DV discharging voltage

cv charging voltage

DCIR direct current internal resistance

Kp Kalman gain

Xk state

Wy process noise

Qi process noise covariance

Vg measurement noise

Ry measurement noise covariance

Py covariance matrix of state estimation uncertainty
Hy, measurement sensitivity matrix

HD Hamming distance

w weight matrix

b bias vector

P input vector

a output vector

R number of elements in each input vector
S number of neurons

€ lateral interaction coefficient

ISVP initial starting voltages points

m average of each characteristic parameter
std standard deviation of each characteristic parameter
o tuning value

ing/charging current is commonly applied to the batteries, the
magnitudes of the respective voltage variances are different. In
addition, the discharging/charging voltage (DCV) pattern of each
battery is almost constant under identical conditions such as
voltage magnitude, current type (discharging/charging), and time
interval. Therefore, the DCV pattern can be used to discriminate
among Li-ion batteries with different characteristics for improved
SoC estimation. This investigation proposes the use of a Hamming
neural network for such DCV pattern recognition. The Hamming
network is generally used and designed explicitly for binary pattern
recognition. In this study, the Hamming network is used to evaluate
several predetermined representative DCV patterns and determine
the one that is closest to the input DCV pattern by comparing the
inner products. Through statistical analysis, the proposed method
can perform recognition of an arbitrary DCV pattern. Represen-
tative DCV patterns are collected from ten fresh Li-ion batteries,
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Fig. 1. Lumped parameter battery model: open-circuit voltage (OCV), series resis-
tance (R;), diffusion resistance (Rpjs), and diffusion capacitance (Cps).
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Fig. 2. Experimental setup.

together with seven characteristic model parameters for each bat-
tery. In addition, to simplify the statistical analysis, all the DCV
patterns are separated into two groups: discharging voltage (DV)
patterns and charging voltage (CV) patterns. Finally, the model
parameters of the identified representative battery are used for SoC
estimation of an arbitrary battery. This avoids the need for repeated
measurement of model parameters. The SoC estimates based on off-
line and on-line methods are compared with those of ampere-hour
counting. Then, two SoC estimation results of the EKF satisfy the
specification within +5%.

2. Experimental

Experimental studies were conducted on Samsung 18650 Li-ion
batteries that had a rated capacity of 1.3 Ah. As shown in Fig. 2, the
experimental set-up comprised a power supply for battery charging
(Agilent E3633A), an electric load for discharging (Hewlett Packard
6050A), a humidifier chamber for temperature control (Hitachi U-
6652P-CH3), and an electrochemical impedance spectroscope (EIS)
for obtaining impedance plots (Zahner IM6ex). The experimental
results were collected with a data-acquisition board, stored on a PC,
and used as inputs for MATLAB/Simulink S-function simulations. All
experiments were performed at 25°C.

For reference, the rated capacity was measured by fully
charging-discharging scheme. For fully charging Li-ion batteries,
the constant current-constant-voltage (CC-CV) protocol was used.
A direct current of 0.65 A(C/2) was used to charge the battery dur-
ing the constant current part and the cut-off voltage was set at
4.2V. Subsequently, the voltage was held constant at 4.2V till the
current fell to 100 mA. After fully charging, the constant-current
(CC) protocol was used for fully discharging. A direct current of
4 A(3C) was used to discharge the battery and the cut-off voltage
was setat 2.8 V. Using this protocol, the battery could be completely
discharged to obtain the capacity. So, the batteries were operated
within the voltage range from 2.8V to 4.2V.

In the entire SoC range at each 10% SoC interval (except at SoC
0% and 100%), the OCV, the direct current internal resistance (DCIR)
[42]and the impedance were measured by a 10% SoC CCdischarging
segment. During a period of 1h, the interval between the previ-
ous discharging and the following discharging, a rest period was
applied to return to the electrochemical and thermal equilibrium
conditions. The battery voltage was stable during the experiments
and changed by <1 mV. The impedance data generally covered a
frequency range of 1 mHz to 100 kHz in the potentiostatic mode. A
sinusoidal a.c. voltage signal of +£5 mV was applied.

3. Battery parameters and a.c. impedance measurements

The model parameters and a.c. impedance were measured to
determine their variance with electrochemical characteristics and
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Table 1
Rated capacities (Ah) of ten fresh Li-ion batteries at 25°C.
Battery No. 1 No. 2 No. 3 No. 4 No. 5
Capacity [Ah] 1.2748 1.2844 1.2826 1.2841 1.2865
Battery No. 6 No. 7 No. 8 No.9 No. 10
Capacity [Ah] 1.2761 1.2925 1.2753 1.2704 1.2796
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Fig. 3. DCIR (R; + Rpjg) results for ten fresh batteries at 25°C.

temperature/ageing effects. Note that in exploring the question of
parameter variation, this paper is limited to two resistances—series
resistance (R;) and diffusion resistance (Rpj).

3.1. Electrochemical characteristics

Model parameters are not always consistent across batteries
with similar rated capacities. Table 1 shows the rated capacities
of ten fresh Li-ion batteries. As shown in Fig. 3, in the entire SoC
range except at SoC 0% and 100%, the sum of two resistances
(R;i + Rpjge), called DCIR, is not consistent. In addition, the inconsis-
tent DCIR values are shown at SoC 60% for the ten experimental
batteries.

3.2. Temperature and ageing effects

Model parameters generally vary with temperature. The DCIR
and Rp;s of ten fresh batteries at various temperatures (10-50°C)
at SoC 60% are compared with those at 25°C in Fig. 4. Due to the
different electrochemical characteristics, large differences are seen
in the DCIR and Rpj¢ results among the batteries. Fig. 5 shows a.c.
impedance measurements made using Nyquist plots in the fre-
quency domain at SoC 30, 60, and 90%. It is seen that temperature
has a significant effect on the a.c. impedance. With increased tem-
perature, the diameter of the two overlapping arcs, which reflects
the Rpjsr becomes smaller. Consequently, it can be concluded that
Rpifs is the primary factor affected by temperature.

Ageing is another important effect that influences battery
parameters. Calendar-life tests [43] were used to degrade perfor-
mance over periods of 50-150 days at 60°C. The a.c. impedance
measurements of aged batteries using Nyquist plots in the fre-
quency domain at SoC 30 and 60% at 25 °C are presented in Fig. 6.
The diameters of the two overlapping arcs are clearly related to
ageing time. Thus, Rp;g as a primary factor is influenced by age-
ing. Due to the different electrochemical characteristics, there is
some difference between the diameters of the overlapping arcs
in the impedance spectra at SoC 30 and 60%. Combined tempera-
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Fig. 4. DCIR and Rpi results for ten fresh batteries at various temperatures
(10-50°C; interval, 10°C).
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Fig. 5. a.c. impedance spectra of fresh battery at 10, 25 and 50°C (SoC 30, 60, and
90%).
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Fig. 6. a.c. impedance spectra of aged batteries at 25 °C (SoC 30 and 60%).

ture/ageing effects can cause large differences, as shown in Table 2,
Figs. 7 and 8. The ageing effect led to the most marked differences
in the diameters of the two overlapping arcs from that of a fresh
battery.
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Table 2
Rated capacities (Ah) of fresh battery and five batteries aged at 10, 25 and 50°C.
Calendar-life test days Capacity Capacity Capacity
[Ah] 10°C [Ah] 25°C [Ah] 50°C
No of days (Fresh) 1.1113 1.2901 1.3192
50 days 0.9890 1.1482 1.2352
75 days 0.9622 1.1170 1.1834
100 days 0.9057 1.0515 1.1332
125 days 0.8649 1.0041 1.1039
150 days 0.8577 0.9957 1.0649
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Fig. 7. DCIR (R; + Rpjsr) results for a fresh battery and aged batteries at 25 and 50 °C.
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Fig. 8. a.c. impedance spectra of aged batteries at 10, 25 and 50°C (SoC 30, 60, and

90%).

Consequently, it should be mentioned that model parameters
are greatly varied by the three factors. These factors lead to low
BMS performance but, to date, no definitive solution exists.

4. Extended Kalman filter (EKF)

The EKF is the optimum state estimator for a non-linear system
and is widely used for SoC estimation. In general, the dynamic and
measurement models used in the EKF are as follows.

Dynamic model : w~N(0, Q)
(1)

vk~N(O, Ri)  (2)

X = free1(Xp—1) + g(Uk—1) + Wi_4

Measurement model :  z, = hy(x;) + i(ug) + vy

Here w), represents process noise and is assumed to be indepen-
dent, zero-mean, Gaussian noise with a covariance matrix Q. The

measurement noise vy is assumed to be independent, zero-mean,
Gaussian noise with a covariance matrix Rj. Then, the equations
that decide the Kalman gain K}, are as follows:

-1
Ky = PeHI [HiPeH + Ry ] (3)
Re(+) = (=) + K [Z — HeRp(—)] (4)

where the error covariance matrix is P, and the measurement sen-
sitivity matrix is H.

Estimation of the SoC requires a lumped parameter model
(Fig. 1) that represents the static and dynamic behaviour of the bat-
tery. This can serve to construct the simplified model and prevent
the EKF algorithm from measurement errors caused by inaccu-
rate modelling. The simplified model has only two states. With the
states incorporated, the dynamic model for the EKF is expressed as:

1 0 —

SoC SoCy_1 C

X = = At + n
« |:VDiffk:| 0 1-G—— [Vnifflm] At
Diff'Diff CDiff

i-1(5)

The measurement model and the terminal voltage of the battery
are expressed by the following non-linear function.

Vi = hi(OCV, Vpjfr) — Ryiiy = OCV — Vpigr — Ry (6)
The OCV in the measurement equation is implemented by the
OCV-SoC relationship:

Ohsoc(SoC)

ohy,
. dSoC
0

0x k -

0

OCV = hsoc(S0C),  hsoc =foeh  (7)

5. Hamming network

The Hamming neural network [44-50] is used for pattern
recognition, as shown in Fig. 9. It is one of the simplest exam-
ples of a competitive network and is designed explicitly to solve
binary pattern recognition issues. The Hamming network decides
which representative pattern is closest to the current pattern by
comparing the inner products. Its objective is to decide which pro-
totype vector is closest to the input vector. The Hamming network
consists of two layers: the feedforward layer and the recurrent
layer.

5.1. Feedforward layer

The feedforward layer calculates a correlation or inner prod-
uct between each representative pattern and the current pattern
in order to find the minimum Hamming distance (HD) from cal-
culation the difference between dimension m and HD. In order to
calculate the inner product, a weight matrix W! is a set of proto-
type vectors and is transformed into a binary form, in addition to
the bias vector, b1:

1wiT [aw! w! sw! D;
Wi SwiT B w2 w2 w2 el "
- : 2 : S N
SwiT L le 2WR sWR pg
1_ _[m m m
' =R R, RI= |5, 505 (9)

where each row of W! represents a prototype vector which it is
required to be recognize; each element of b1, m/2, is the threshold
value and is set equal to the number of elements in each input vector
R; and S is the number of neurons. As expressed in Eq. (10), it is
high desirable to have the ith (1 <i <R) node in this layer compute
m — HD(;w, p) for a given input vector p, where HD(;w, p) is the
Hamming distance between vectors ;w and p. Then, the net input of
node is as in Eq. (11), namely, the feedforward layer output. Finally,
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Fig. 9. Hamming network.

these outputs are equal to the inner (Eq. (12)). The neuron in this
layer with the largest output corresponds to the prototype pattern
that is closest in Hamming distance to the input pattern.

W'p = [m — HD(;w, p)] — HD(;w, p) (10)
neti:nlzwlp-i-g:m—HD(,-w,p) i=1,2,...,8 (11)
pi[p+R
1 1 PP +R : 1 1
al =wW!lp+b' = . = purelin(W!p +b') (12)
pip+R

5.2. Recurrent layer

The recurrent layer is known as the MAXNET. It is a competition
layer that performs the winner-take-all (WTA) operation, whose
purpose is to enhance the initial dominant response of the ith node
and suppress the others [50]. The neurons are initialized with the
outputs of the feedforward layer, which indicate the correlation
between the prototype vectors and the input vector:

a’(0)=a' (13)

As aresult of recurrent processing, the ith node responds positively,
whereas the responses of all remaining nodes decay to zero. Thus,
in order to determine a winner (which only has a positive output),
the neurons compete with each other. Then, the recurrent layer
output is updated according to the following recurrence relation
using a positive transfer function (poslin):

a%(t + 1) = poslin(W?a2(t)) (14)

This processing requires self-feedback connections and negative
lateral inhibition connections in which the output of each neu-
ron has an inhibitory effect on all of the other neurons. The n x n
weight matrix of the recurrent layer W2 is taken in Eq. (15). The
weights in this layer are set so that the diagonal elements are 1,
and the off-diagonal elements have a small negative value, where
0<e<1/(S—1) is called the lateral interaction coefficient. Thus,
weight values of 1 and —¢ can be set for the appropriate elements
of W2 in Eq. (16), where 1<i<Sand 1<j<S.

The output of each neuron decreases in proportion to the sum
of the outputs of the other neutrons. The output of the neuron with
the largest initial output decreases more slowly than the outputs
of the other neurons. But eventually, only one neuron will have
a positive output. The index of the recurrent layer neuron with a
stable positive output is the index of the prototype vector that is
the best match with the input.

6. Proposed approach
6.1. Discharging/charging voltage (DCV) measurement

After fully charging (SoC 100%) at a constant current of 4A,
followed by a rest period, each battery was discharged to SoC
80%. Then, for a scaled-down discharging/charging current profile
(Fig. 10(a)) of a HEV (time interval, 100 ms), the DCV data col-
lected is shown in Fig. 10(b). The DCV pattern is recognized through
experiments for 20 fresh 1.3-Ah Li-ion batteries at 25 °C (Fig. 11).

6.2. Initial starting voltage points (ISVP)

For recognition of the DCV pattern with the Hamming network,
statistical analysis is absolutely necessary. First, given current i, all
DCVs are separated into two patterns: discharging voltage patterns
(DV; i>0) and charging voltage patterns (CV; i<0), as shown in
Fig. 12(a) and (b). Second, the initial starting points of each DV and
CV pattern should be fixed. As shown in Figs. 13 and 14, the initial
starting voltage points (ISVP) of the ten representative batteries
are not fixed due to their different electrochemical characteris-

w! w? wS 1 —-¢ —&
w! w? o...ow - 1 —£

w=| . . |= . (15)
w!l w? o...ow —e -¢ 1

a%(t+1) = poslin a?(t)sta]?(t) (16)
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Fig. 10. Two plots for discharging/charging voltage pattern (DCV): (a) current pro-

file; (b) voltage data.
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tics. Hence, the average and standard deviations of the collected
discharging/charging voltages cannot be compared. Therefore, it is
required to set a standard ISVP, as shown in Fig. 15.
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Table 3
Characteristics of AVE and STD in relation to voltage variance.
Voltage variance (initial voltage — final voltage) Discharging Charging
AVE STD AVE STD

Large voltage variance
Small voltage variance

Small Large
Large Small

Large Large
Small Small

Table 4
Seven characteristic parameters.

DCV pattern Cc1 Standard deviation DCV
DV pattern 2 Standard deviation DV
CV pattern c3 Standard deviation CV
DV pattern c4 Average DV ®

c5 Standard deviation DV D
CV pattern C6 Average CV ®

Cc7 Standard deviation ¢V ®

Standard: No. 6 (discharging), No. 1 (charging) @' fixation

For example, consider three batteries (A-C) with different ISVPs
(Va11-Vci1). If the standard battery is set as B (Vg1; = Vo), then the
voltages of A and C are higher and lower, respectively (Va1 — Va2i;
Vci11 — Vear). Therefore, the three ISVPs are fixed at one point. The
fixed discharging/charging voltages are given in Fig. 16(a) and (b),
respectively. All average and standard deviations for the collected
discharging/charging voltages can be compared by statistical anal-
ysis. For given the discharging/charging conditions, the average
(AVE) and standard deviation (STD) in relation to voltage variance
are presented in Table 3. Regardless of the discharging/charging
conditions, the STD values increased at large voltage variance.
These features of AVE and STD are used to implement some charac-
teristic parameters of the Hamming network, as shown in Table 4.

6.3. Characteristic parameters of DCV pattern

Here, as indicated in Table 4, seven characteristic parameters
(C1-C7) are learned by the Hamming network using the aver-
ages and standard deviations based on DCV, DV and CV patterns.
Each value of the seven characteristic parameters corresponding
to the ten representative DCV patterns is transformed into 1 and
—1 array as the four levels of Fig. 17. If these patterns are not
transformed into this binary form, then the pattern recognition
performance can be distorted by the one parameter that has a
large real value. In Fig. 17, m is the average and std is the stan-
dard deviation of each characteristic parameter, and these values
are given in Table 5. The levels of each parameter are decided by
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Fig. 13. Unfixed discharging voltages for ten Li-ion batteries.
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and m+(« x std). The levels

) m,

(a x std

o m—

three standards, viz

are decided according to the values of the parameters, as shown

in Fig. 18. For example, if the value is larger than m — (« x std) and

smaller than m

V' N

the level is L2; « is a tuning value and is chosen

as 0.5 to make the characteristic differences of ten representative

patterns.

(m+ (axstd))

(axstd)) m

(m —

Fig. 17. Four levels and three standards.
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Battery 7
Battery 6
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L3
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L2
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L1
Battery 1
(o
15%Ccce
5 6 7
Fig. 18. Characteristics of ten representative patterns.
Table 5
Average (m) and standard deviation (std) of each characteristic parameter.
Battery C1-C7
DCV DV v pv® awv®
Standard Standard Standard Average Standard Average Standard

No. 1 0.1673 0.1199 0.1170 3.6456 0.1201 3.9299 0.1168
No. 2 0.1699 0.1244 0.1212 3.6317 0.1244 3.9345 0.1212
No. 3 0.1710 0.1261 0.1222 3.6289 0.1261 3.9355 0.1222
No. 4 0.1727 0.1263 0.1227 3.6280 0.1263 3.9368 0.1227
No. 5 0.1683 0.1210 0.1179 3.6431 0.1215 3.9321 0.1180
No. 6 0.1693 0.1235 0.1199 3.6332 0.1230 3.9340 0.1192
No. 7 0.1739 0.1276 0.1240 3.6255 0.1276 3.9379 0.1240
No. 8 0.1657 0.1167 0.1135 3.6478 0.1180 3.9242 0.1134
No.9 0.1637 0.1145 0.1121 3.6503 0.1123 3.9217 0.1112
No. 10 0.1669 0.1193 0.1165 3.6465 0.1197 3.9286 0.1165
Average (m) 0.1689 0.1219 0.1187 3.6378 0.1219 3.9315 0.1185
Stanard (std) 0.003148 0.004367 0.003986 0.009936 0.004626 0.005385 0.004161

6.4. Pattern recognition with Hamming network

As shown in Fig. 19, the feedforward layer calculates the inner
product between each representative pattern and the current pat-
tern. The value of each of the seven characteristic parameters
corresponding to ten representative patterns is transformed into
the binary form and stored in the weight matrix W1. The ten neu-
rons storing the results of the inner product in the feedforward
layer compete with each other to determine a winner. After the

wl
10X21

20X1

10X1
74

21— bl

R=21 10X1

competition, only one neuron will have a non-zero output, and
this neuron indicates the representative pattern that is closest to a
current pattern.

6.5. Verification

The DCIR results for the ten representative batteries were com-
pared with an unknown pattern, as shown in Table 6, and the
outputs of the two layers of the Hamming network for three

\

w2 >
10X1 10X1

10X10 4

Fig. 19. Hamming network used in the study.
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Table 6
DCIR results of ten Li-ion batteries used as representatives [€2].
Battery SoC
10% 20% 30% 40% 50% 60% 70% 80% 90%
No. 1 0.07431 0.07424 0.07248 0.07137 0.07018 0.07270 0.07397 0.07259 0.07138
No. 2 0.07999 0.07719 0.07628 0.07375 0.07239 0.07486 0.07688 0.07571 0.07576
No. 3 0.08077 0.07787 0.07656 0.07450 0.07278 0.07550 0.07762 0.07656 0.07645
No. 4 0.08183 0.07922 0.07796 0.07709 0.07607 0.07883 0.07916 0.07800 0.07717
No. 5 0.07449 0.07329 0.07240 0.07125 0.07029 0.07303 0.07361 0.07333 0.07200
No. 6 0.07832 0.07609 0.07494 0.07264 0.07164 0.07353 0.07508 0.07425 0.07423
No. 7 0.08503 0.08146 0.08059 0.07962 0.07844 0.08108 0.08153 0.08035 0.07889
No. 8 0.07257 0.07140 0.07005 0.06879 0.06769 0.07018 0.07076 0.07036 0.07012
No.9 0.07179 0.06969 0.06878 0.06725 0.06569 0.06876 0.06948 0.06921 0.06926
No. 10 0.07519 0.07369 0.07302 0.07151 0.06963 0.07328 0.07404 0.07308 0.07270
unknown patterns are shown in Figs. 20-22. In each case, it seen a so . i i i i i i
that, in the recurrent layer only the selected representative pattern ! ! ! ! ! ! N — g::’::z;
has a non-zero output. In addition, as demonstrated in Table 7, the 40 i i i i i i ‘ Battery 3
DCIR results of the three unknown batteries are similar to those of gggzzg
the representative pattern selected. Battery 6
Battery 7
Battery 8
Battery 9
Battery 10
180 200
Battery 1
Battery 2
Battery 3
Battery 4
Battery 5
Battery 6
Battery 7
Battery 8
Battery 9
Battery 10
Battery 1 180 200
Battery 2 ||
gggg"y 2 Fig. 21. Outputs of two neural network layers (arbitrary battery 2, selected pattern
Batteg 5 | No. 3): (a) feedforward layer; (b) recurrent layer.
----- Battery 6
----- Battery 7 || .
- Battery 8 6.6. SoC estimation
----- Battery 9 [{
== == = Battery 10

i
0 20 40 60 80 100 120 140 160 180 200

Fig. 20. Outputs of two neural network layers (arbitrary battery 1, selected pattern
No. 10): (a) feedforward layer; (b) recurrent layer.

In the proposed method, as shown inFig. 1, the OCV, R;, Rpjs, Cpifr»
and capacity are measured in advance. For reference, it is assumed
that R; is constant, Rp;s/Cpigr is the time constant t (=46.37 s), and
SoC is 50%. The OCVs and other model parameters are listed in
Fig. 23 and Table 8, respectively.

Table 7
DCIR results of three unknown Li-ion batteries [€2].
Battery SoC
10% 20% 30% 40% 50% 60% 70% 80% 90%
Test 1 0.07552 0.07381 0.07330 0.07173 0.06978 0.07341 0.07411 0.07316 0.07283
Test 2 0.08068 0.07775 0.07642 0.07431 0.07256 0.07533 0.07787 0.07665 0.07654
Test 3 0.07453 0.07412 0.07235 0.07123 0.07032 0.07252 0.07387 0.07243 0.07131
Table 8
Model parameters of ten Li-ion batteries used as representatives.
Battery SoC
Diffusion resistance Rp;r [€2] Diffusion capacitance Cpj [F] Capacity [Ah]
No. 1 0.02918 1589.19 1.2748
No. 2 0.03139 1477.30 1.2844
No. 3 0.03178 1459.17 1.2826
No. 4 0.03507 1322.28 1.2841
No. 5 0.02929 1583.22 1.2865
No. 6 0.03064 1513.46 1.2761
No. 7 0.03764 1238.58 1.2925
No. 8 0.02669 1737.45 1.2753
No. 9 0.02469 1878.19 1.2704
No. 10 0.02863 1619.72 1.2796

Ri=0.04110%2, 1=46.37s
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Fig. 24. Two plots for discharging/charging of unknown battery: (a) current profile;

(b) voltage data.
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-{)aCI;lliergsults for unknown Li-ion battery used for online SoC estimation [€2].
Battery SoC
10% 20% 30% 40% 50% 60% 70% 80% 90%
Test 1 0.08212 0.07981 0.07852 0.07773 0.07645 0.07921 0.07974 0.07789 0.07701

6.6.1. Off-line SoC estimation

As shown in Fig. 24(a), another scaled-down HEV automotive
current profile (time interval, 1s) was applied to the battery to
be measured. Then, as seen in Fig. 24(b), the discharging/charging
voltage data were collected. Then the discharging/charging volt-
age was separated into the discharging and charging voltage,
as presented in Fig. 25. Next, for the three unknown batteries
in Section 6.5, the model parameters of selected representa-
tive patterns were used to estimate the SoC. Thus, it is possible
to estimate the SoC for an arbitrary battery, without the need
for repeated measurement of model parameters. As indicated in
Figs. 26-28, all SoC estimates were within +5% of the ampere-
counting results.

6.6.2. On-line SoC estimation

Offline SoC estimation involves sequential processing. After
discharging-charging a battery using a scaled HEV driving current
profile, pattern recognition and SoC estimation were performed
sequentially. This off-line processing is very useful to screen the
batteries that have similar electrochemical characteristics under
discharging/charging during a long period time over a fully SoC
range, because it cannot be assured that discharging/charging
during a short period time can determine the electrochemical char-
acteristic of a battery [51]. For SoC estimation, however, it may be
time-consuming. The proposed method relies on constant model
parameters for a set of selected representative patterns for SoC
estimation. Therefore, in order to reduce the SoC estimation error
in comparison with off-line processing, online SoC estimation can
be performed. The same discharging/charging current profile as
that used for off-line SoC estimation is adopted. During discharg-
ing/charging, only voltage data for the last 6000s are necessary
for pattern recognition. Every 300s, the stored signals are ana-
lyzed statistically. The storing period of signals, i.e., 1s, and the
updating period of the control algorithm, 300s, were selected so
as not overload the control unit. Then, the SoC estimation is not
absolutely performed during this period. After pattern recognition,
the model parameters of the selected battery are used to estimate
the SoC. As shown in Fig. 29, the selected representative pattern
is No. 4. The DCIR for the unknown battery is compared with that
of representative pattern of No. 4 in Table 9. As shown in Fig. 30,
the estimated SoC using the parameters of representative battery
No. 4 are within £5% of the estimated obtained by ampere-hour
counting. A schematic diagram of the proposed method is given in
Fig. 31.

7. Conclusion

Precise SoC estimation is critical for practical applications and
to prevent over-charging and over-discharging of Li-ion batteries
that may cause permanent internal damage. Unfortunately, how-
ever, the existing EKF algorithm does not account for variations
in battery parameters due to differences in electrochemical char-
acteristics and the effects of temperature and ageing. This study
proposes a method to identify the characteristics of Li-ion batter-
ies using the Hamming network for improved SoC estimation. The
discharging/charging voltage patterns of ten fresh representative
Li-ion batteries are used. The model parameters of a representative
battery that most closely matches the discharging/charging volt-

age pattern of the unknown battery to be measured are used for
SoC estimation by the conventional EKF. This avoids the need for
measurement of battery parameters before every SoC estimation
process. It can be concluded that SoC estimation can be selec-
tively and quickly implemented off-line or on-line by the proposed
methods for discharging/charging a battery in, for example, screen-
ing processes. The proposed method produces estimates that are
within +5% of those obtained by ampere-hour counting.
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